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Abstract 

It has been recently realized that within the Minimal Supersymmetric 
Standard Model, for certain patterns of super-partner masses, consistent 
with all the present experimental constraints, the scalar potential may de- 
velop at some scale Qo unbounded color/charge breaking directions involv- 
ing the sfermion fields, and that these patterns are then excluded unless 
some new physics is invoked at or below the scale Qo. We reanalyze this 
observation and point out that such patterns of superpartner masses at 
the weak scale are not ruled out when taking into account the probabil- 
ity of decay for the metastable color conserving minimum along these color 
breaking unbounded directions. It turns out that the color conserving min- 
imum, although metastable, has a lifetime longer than the present age of 
the Universe and can survive both quantum tunneling and the effects of 
high temperatures in the early Universe, causing the color/charge breaking . 
effects to be in practice not dangerous. 
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1. Introduction 

There are many good reasons to believe that the Standard Model is not the ultimate 

theory of nature since it is unable to answer many fundamental questions. One of them, 

why and how the electroweak scale and the Planck scale are so hierarchically separated 

has motivated the Minimal Supersymmetric extension of the Standard Model (MSSM) as 

the underlying theory at scales of order 1 TeV [l] . A huge number of new parameters ap 

pear when considering the MSSM. Some of these new parameters are constrained by the 

unsuccessful searches of new particles at accelerators. Others may receive severe bounds 

from the requirement of avoiding large flavour-changing neutral currents. Moreover, con- 

straints on the parameter space, which mostly involve the soft supersymmetry breaking 

trilinear terms A’s, arise from the existence of charge and/or color breaking minima in 

the scalar sector when looking at some particular directions with nonvanishing vacuum : 
expectation values (VEV’s) of the Higgs fields (21. 

By considering directions in the field space which do not interest the VEV’s of the 

Higgs fields, it has been recently pointed out that certain mass patterns for the super- 

partners cannot arise at low energy unless there is new physics beyond the MSSM and 

below the grand unified (GUT) scale [3]. Indeed, there are many flat directions in the 

field space of the MSSM and it may happen that some combination of the squark and/or 

slepton mass-squared parameters get negative at some scale QO below the GUT scale 

when running through the Renormalization Group Equations (RGE’s) from the weak 

scale up. This leads either to the appearance of unacceptable color breaking minima 

or to unbounded from below directions in the effective potential for the squark and/or 

slepton fields &s, making the color conserving minimum 4 = 0 me&table. Ih such a 

case, it has been argued in ref. [3] that the corresponding region of the parameter space 

is either ruled out or there must exist some new physics below the scale Q. whose effects 

can change the evolution of the mass-squared parameters with the scale Q [3]. 

The situation here is fairly analogous to what happens for the effective potential of the 

SM Higgs field H: for a top quark mass large compared to the Higgs and gauge bosons 

masses, the ‘one-loop top quark contribution to the effective potential will dominate the 

others and drive the coefficient of the quartic term H4 negative for very large values of 
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H, thus destabilizing the effective potential and making our vacuum at (H) N 250 GeV 

a local, but not global, minimum [4]. Nonetheless, the electroweak vacuum need not be 

absolutely stable. For certain top quark mass M* and Higgs boson mass MH it may just 

be instead met&able, as long as its lifetime exceeds the present age of the Universe [5]. 

The decay of the electroweak vacuum may be driven at low temperatures by quantum 

tunneling or at high temperatures by thermal excitations. Even if the requirement that 

our vacuum survives the high temperatures of the early Universe places strong constraints 

from vacuum stability on the (Mt, MH) parameter space, still values of the top quark 

and Higgs boson masses for which our vacuum is metastable, but with a lifetime larger 

than the present age of the Universe, are allowed. 

The purpose of the present Letter is to reanalyze the constraints on super-symmetric 

models discussed in ref. [3), involving some combination of the sparticle masses at the 

weak scale and imposed to avoid large color breaking VW’s 4 # 0 or destabilized effective 

potentials along some squark and/or slepton directions, and to point out that such limits 

may be weakened by considerations about the survival of the color conserving minimum. 

Even if such a minimum may be metastable in large regions of the parameter space of 

the superpartner masses, its lifetime turns out to be almost everywhere longer than the 

present age of the Universe. This means that the regions of the parameter space ruled 

out (unless some new physics appears before a certain scale Qa) in ref. [3] may be indeed 

permitted without any need of new physics. 

The paper is organized as follows: In Section 2 we shall briefly review the effective 

potential along some particular directions of the squark fields showing why it may be 

destabilized and which are the consequent constraints on the superpartner mass patterns 

[3]. In Section 3 we discuss the color conserving C#I = 0 decay rate at zero tempera- 

ture, leaving the finite temperature case to Section 4. Finally, Section 5 presents our 

conclusions. 

2. The effective potential and flat directions 

Let us consider the same flat direction in the squark fields analysed in ref. [3]: CL = 
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s; = &i E d/a. Along this particular direction the coefficient X(Q) of the quartic term 

44 is vanishing for all scales Q, and the on4oop effective potential reads 

v(4) =. $-~Q)&Q) + ~~~~~~~~~ (1) 

where m* f rn& + rniR + rn& and VI-loop is the one-loop correction to the effective 

potential (in the DR-scheme) 

V l-loop(d) = & StrM’(+)[In(y) -;I. (2) 

where Str counts properly all the degrees of freedom, summing over all the mass eigen- 

states which get mass in the &background field. 

Since the one-loop potential behaves as cx ln(g&5*/&*) for large values of 4 (gs 

is the W(3) gauge coupling constant), in order that the approximation of neglecting 

loop effects be safe one should adopt in the renormalization group improved tree level . 
potential a scale Q N gs4 to make the logarithms small. In practice, we will adopt 

Q = Q4 = j/&P + M$, so as to stop the running below Q N Ms, and use for the 

effective potential 

WJ> = fm*(Q&*. (3) 

The prescription is trivial: just evaluate the mass parameter m* at the scale Q N Q4. 

The RGE for m* is given by 

Q 
dm* 1 
d& = 8 -1Sg; M; 

[ - i & Mi + 2 h;f (m& + rniR + m28, + A:)] , (4) 

where gr is the standard U(1) coupling, M; are gaugino masses, hb is the bottom quark 

Yukawa coupling and Ag is the bottom quark trilinear mixing parameter, and all param- 

eters are running. If tan p (the ratio of the two Higgs VEV’s) is not too large, hb is small 

and the term proportional to hz in the above Equation can be neglected, leading to the 

solution [3] 

m*(Q)=m* - $&WM&(Q/Md 
1+ 3d(Mdln(Q/M~)/( 16x*) 
[I+ 3d(M3>1n(Q/M3)/(8~2>]2 

- &g@W&(QIMd 
1 - llg~(Ml)ln(Q/Ml>/(16~*) 
[l- W&K )ln(Q/M )/(8x*)]* ' 

(5) 
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where all masses on the right-hand side are physical (propagator pole) masses and the 

only undertermined factors are $(Mi) and gz(Ms), which depend on the full spectrum of 

the superpartner masses and the initial condition os(Mz) = 0.12. If one takes Mr 5 A43, 

as usually results in GUT models, the effects of the term proportional to 9: in Eq. (5) is 

negligible. To obtain g3(M3) we have assumed a common super-symmetric threshold at 

MS, but the results are almost unsensitive to this simplifying assumption. 

In Fig. 1 we show the contours of m*(Qe) = 0 for different values of Qe in the 

(ml& M3)-Pl ane. Portions of the parameter space lying to the right of each contour 

(for a given scale Qe) are characterized by an effective potential unbounded from below 

and by a metastable color conserving minimum 4 = 0, unless some new physics capable 

of modifying this situation is present between the soft supersymetry breaking scale (- 1 

TeV) and Qe ‘. It is easy to see, from Eq. (5), that for n 5 A43 one has that the value 

of the field & for which V(h) = 0 is 

7r2m2 
&I =M~=P 2gw - [ 1 (6) 

In Fig. 2 we draw the running scalar mass m*(Q,+), normalized to its value m* for 

qS = 0, as a function of the field 4, assuming that m/a = 500 GeV and for values of M3 

of 1500, 1000, 700 and 600 GeV. The effective potential is just obtained by multiplying 

the result by m*t#?-/2. Notice that a barrier will be present in V(4) separating the 

met&able vacuum 4 = 0 from the region of very large values of t#+ where m*(Qb) < 0 

and the potential becomes negative and unbounded from below. 

From the analysis of the effective potential one can then conclude that the sparticle 

masses at the weak scale must satisfy severe relations among each other to avoid the 

‘The contours of Fig. 1 are slightly different from those presented in ref. [3] since there the 

authors have introduced a non-renormalizable operator (l/S)@/M* which lifts the unbounded 

direction and results in a VEV qS(Q) = Ml/*(-m*(Q)) ‘/*. Then they have plotted the self- 

consistency condition 4(Q) = Q and found that for m/a 5 0.7 M3 some new physics below 

Mpl is necessary because of the existence of large color breaking VEV’s. 
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color conserving minimum 4 = 0 becoming a local minimum and the potential to develop 

unbounded directions for large values of the field 4. 

In the next Sections we shall show that these relations may be relaxed, since in most of 

the region in the parameter space (m/a, M3) where the minimum 4 = 0 is met&able, 

it has however a lifetime longer then the age of the Universe, so that color breaking effects 

are in practice not dangerous. 

3. Nucleation by quantum tunneling 

The decay of the met&able color conserving minimum 4 = 0 may occur by the nucle- 

ation of bubbles of the unstable phase. If the bubble is too small, it collapses under its 

surface tension. If the .bubble is large enough, it expands classically, eventually absorbing 

all the met&able phase. At zero temperature, the vacuum can decay only by quantum 

tunneling through the barrier separating the met&able vacuum from the region of neg- 

ative values of V(4). The WKB amplitude for false-vacuum decay by tunneling may be 

found expanding the Euclidean path integral about the bounce solution to the Euclidean 

equation of motion [7] 

The bounce solution is an O(4) rotationally symmetric solution and solves 

(8) 

where s = (t”, + r*)r/*. It takes some convenient value ti0) at s = 0 (with 4’(O) = 0), 

probing the unstable region of the potential (d(o) > &, where V(h) = 0), and falls to 

the false vacuum 4 = 0 as s + 00. When viewed as a function of the Euclidean time tE, 

the bounce solution interpolates between the false vacuum #(tE + -co,r) = 0 and an 

unstable bubble #(tE = 0, r), which is just large enough to expand on its own classically. 

The Euclidean action S4 of the bounce solution yields the exponential suppression of the 

rate for the .false vacuum decay per unit volume 

b/V = 04 exp [-S4], P-9 
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where 04 is a coefficient calculated from fluctuations around the bubble. 

The rate for the decay of the met&able color conserving minimum 4 = 0 at zero 

temperature may be found simply by solving Equation (8) numerically, using the effective 

potential (3) discussed earlier, and computing the Euclidean action. Some qualitative 

flavour of the results can be obtained by noting that, if 6 >> m and M3, the bounce is 

mainly determined by the behaviour of V at large values of 4, near &. Since W/&l, oc 

@&, we see from Eq. (6) that the radius of the bounce is w Mcl, and for instance the 

kinetic energy contribution to S. results N 4’/@ N exp (r’m*/(2g~@)), which is quite 

large unless m < M3. 

To decide whether the metastable vacuum C#J = 0 would survive the age of the present 

Universe N 1O’O yr, one has to multiply Eq. (9) by the space-time volume of the past 

light cone of the observable Universe. The condition that the lifetime of the metastable 

state 4 = 0 is longer than the present age of the Universe translates into (neglecting the 

very weak dependence upon the prefactor 04) 

s4 2 400. 

Fig. 3 shows the contours in the (m/d, Ma)-pl ane for diierent values of log,,(&), the 

critical value S4 = 400 corresponding to the contour labelled by 2.6. Regions to the right 

of each contour are characterized by an Euclidean action smaller than the value at the 

contour. A comparison between Figs. 1 and 3 shows that the color symmetric vacuum 

C#J = 0, although me&table, has indeed a lifetime which exceeds the present age of the 

Universe, in all the regions of the (m/a, MS)-plane, with the exception of a very small 

wedge at small values of m. From Fig. 1, one sees that in this wedge the vacuum 4 = 0 

could become stable only by the introduction of new physics at a scale below N lo4 GeV. 

From the analysis of the metastable vacuum decay by quantum tunneling at zero tem- 

perature we may therefore conclude that apparently dangerous flat and unbounded di- 

rections in the squark &field space are indeed safe: the barrier separating the met&able 

vacuum from the regions of negative values of V(#) inhibits the formation of sufliciently 

large bubbles and the color conserving vacuum 4 = 0 survives the quantum tunneling. 

In the next Section we shall analyze the fate of the color conserving minimum when 

considering the thermal effects present in the early Universe. 
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4. Nucleation by thermal excitation 

Another source of energy to cross the barrier is the high temperature of the early 

Universe. In the high-temperature plasma, thermal fluctuations may excite a bubble 

sufficiently large so as to be able to induce the transition, and the probability of a thermal 

fluctuation of associated energy Eb to cross the barrier is simply given by a Maxwell- 

Boltzmann suppression factor exp( -Eb/T). 0 ne may think that the rate will not be 

exponentially suppressed at high temperatures, large compared to the barrier energy, 

but however the effective potential, and therefore Eb, also depends on the temperature 

making the barrier higher. At high temperatures, therefore, there is a thermal energy to 

cross the barrier, but the barrier is higher. 

We now need to find the energy barrier for the phase transition. For this we need a 

bubble corresponding to a static, unstable solution of the classical equation of motion [8] 

where V( 4,T) = V( 4) + AV+( 4) is obtained by adding to the zero temperature effective 

potential the one-loop finite-temperature correction [9] AVT(C$) E VT(+) - V=(O), with 

h(4) = $+nic& $ln [l Tfexp (-JiG?iZF)] . (12) 

Here the upper sign is valid for bosons and the lower one for fermions, and n; are the 

corresponding degrees of freedom. Notice that substracting VT(O) from the effective 

potential is necessary for computing the bounce action. 

It is easy to see that VT(O) = -7r*g,p/90, with g. = nb + (7/8)n~ counting the 

degrees of freedom lighter than 2’. Hence, for 6 >> T, AVr(4) = ?r*$5?/90, where ij. 

counts the particles heavier than T in the presence of the field C#I and lighter than T in 

f#~ = 0. In our case, g* = 60 for T >> m and M3. On the other hand, one has for 2’ >> 4, 

T-2 
‘&+#‘> = 24 nBArni + yarn% , 1 

where Am*-= m”(4)-m*(O), so that only the C#J dependent mass terms contribute. In our 

case AVT(~) 2 2gzTzq+* for T >> 4, getting its dominant contributions from the gluons - 
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*we have neglected the small contribution from the photon and photino. 

(via seagull terms), the gluinos and the uk, flR and ai quarks (from the G@j couplings) 

and the corresponding squarks (via the D-terms), with the exception of the flat direction 
2 

Again, we have solved Eq. (11) numerically searching for a solution which probes 

unstable values of 4 at T = 0 and falls off to the met&able vacuum q5 = 0 as T + 00. 

The probability of tunneling per unit time per unit volume is given by 

r3/V = 03 exp [-s3/7’1’ 

where 03 is the determinant factor and S’s is the three-dimensional action of the solution 

of Eq. (11). As discussed by Anderson in ref. [EI] we should now multiply by the volume 

our current horizon had when at temperature T, which is V(T) - (10” yr)3 x (3 K/7’)3, 

and by the amount of,time the Universe spent at temperatures T, which is t w Mpl/p. 

Putting this together,lone finds that the me&table vacuum C$ = 0 has survived the high 

temperatures of the early Universe if 

S3/T 2 230. (15) 

For a given choice of mssses m and MS, we have computed the minimum of S3/T as a 

function of temperature. 

The resulting minimum values are shown as contours in the (m/a, MS)-plane in 

Fig. 4. The interpretation of these results is the following: in the regions where for 

T = 0 the action S4 was very large, corresponding to very large values of ti0) in the 

bounce solution, also the finite temperature bounce action is haplessly large due to the 

exponentially large values of the bounce at the origin (since the finite T correction AI+ 

is positive, the value of 4(O) is even larger in the finite T case). In the remaining region of 

small scalar masses, where the T = 0 bounce had smaller values of 4(O) (- 103-lo5 GeV), 

the following is found: for T >> m and MS, the barrier has a height a 4*5? for 4 < T, 

while it behaves as &7r2p/90 + m2(Q4)q5*/2 for T > 4, and hence the potential can 

become negative only for values 4 a p/,/m] >> T. The width of the bounce 
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is now - ]m*(Qo)] -l/*, so that S3/T a (T/&?@&3. This implies that at large 

temperatures, it becomes harder to jump over the barrier. In fact, we usually find that 

the optimum temperature for the transition is Cl(m). As can be seen in Fig. 4, this 

considerations imply that the lifetime of the met&able vacuum is again larger than the 

age of the Universe with the exception of the small wedge corresponding to m < M3 (to 

the right of the contour labeled 2.4), similarly as in the T = 0 case. 

Notice that so far we have been assuming as an initial condition that the scalar field 

C$ is always sitting at the origin C#I = 0 at high temperatures. Although this is the thermal 

equilibrium state at large temperatures, it is however also possible that the scalar field 

4 is left initially far from the origin, e.g. at an early epoch near the end of inflation, and 

may the roll towards the unbounded direction before reaching the C#J = 0 minimum. Due 

to the uncertainties connected with the hidden sector and the form of the gravitational 

couplings at the Planck scale, it is difficult to determine the (modeldependent) form of 

the potential for # during inflation [lo], specially for large values of the field, although 

some mechanisms which could adjust the initial C$ values close to the origin have been 

suggested [ll]. In this paper we have then assumed that, when the temperature of the 

Universe decreases to the point in which the unbounded direction first appears in V(4, T), 

the scalar field is already sitting close to its color conserving minimum3. 

5. Conclusions 

In this paper we have investigated the constraints involving some combination of the 

sparticle masses at the weak scale arising from the requirement that the met&able and 

color conserving ground state 4 = 0 is stable along flat directions where the effective 

potential V(4) b ecomes unbounded from below for very large values of the scalar field. 

We have concentrated our attention in the direction in field space analysed in ref. [3], 

and a similar analysis may be applied to other dangerous directions considered in the 

literature [2]. 

3We thank E. Kolb for enlightening discussions about this point. 
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In spite of the presence of large regions of the (m/a, Ma)-parameter space where 

the effective potential becomes unbounded unless some new physics appears between 

the MSSM scale and the GUT scale [3], we have pointed out that such constraints 

are significantly weakened when considering the decay probability for the metastable 

state (p = 0 along this unbounded direction. It turns out that the lifetime of this state 

is ionger than the present age of the Universe and that it can survive both quantum 

tunneling, occuring at zero temperature, and the thermal excitations present in the early 

Universe. We then suggest that no severe relations among the super-partner masses should 

be imposed to avoid disastrous color breaking: the met&able color conserving minimum 

is protected against jumping towards dangerous squark unbounded directions and color 

breaking effects are in practice not present. 

- 
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Figure Captions 

Figure 1: Contours of m*(Qo) = 0 for different choices of the scale Qs, below which 

new physics is then required, in the (m/a, MS)-plane. 

Figure 2: The plot of m2(Q4)/ m* as a function of 4 for the particular choice of 

m/d? = 500 GeV and M3 = 600, 700, 1000, 1500 GeV. 

Figure 3: Contours in the (m/a, MS)-pl ane for different values of loglo( the 

critical value S4 = 400 corresponding to the contour labelled by 2.6. 

Figure 4: Contours of the minimum (as a function of the temperature) of S3/T in the 

(ml&, Ma)-~1 ane. The critical value &/T = 230 corresponding to the contour labelled 

by 2.4. : 
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